Spectral set, complete spectral set and dilation for Banach space operators

Sourav Pal (Indian Institute of Technology Bombay, Powai, India)

Famous results due to von Neumann, Sz.-Nagy and Arveson assert that the following four statements are equivalent; a Hilbert space operator T is a contraction; the closed unit disk $\overline{\mathbb{D}}$ is a spectral set for T; T can be dilated to a Hilbert space isometry; $\overline{\mathbb{D}}$ is a complete spectral set for T. In this talk, we show by counterexamples that no two of them are equivalent for Banach space operators. If \mathcal{F}_r is the family of all complex Banach space operators having norm less than or equal to r and if D_R denotes the open disk in the complex plane with centre at the origin and radius R, then we show by an application of Bohr's theorem that \overline{D}_R is the minimal spectral set for \mathcal{F}_r if and only if r = R/3. For a complex Banach space \mathbb{X} , we show that the following statements are equivalent: (i) \mathbb{X} is a Hilbert space; (ii) $\overline{\mathbb{D}}$ is a spectral set for the backward shift operator M_z on $\ell_2(\mathbb{X})$; (iii) $\overline{\mathbb{D}}$ is a spectral set for every strict contraction on \mathbb{X} ; (v) $\overline{\mathbb{D}}$ is a complete spectral set for every contraction T on \mathbb{X} with ||T|| = 1; (vi) $\overline{\mathbb{D}}$ is a complete spectral set of the identity operator $I_{\mathbb{X}}$ on \mathbb{X} .

This is a joint work with Swapan Jana.

 S. Jana and S. Pal, Spectral set, complete spectral set and dilation for Banach space operators, *Preprint*, https://arxiv.org/abs/2411.01605.